Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain
نویسندگان
چکیده
We recently reported that homozygous Presenilin-1 (Psen1) knockin (KI) mice carrying the familial Alzheimer's disease (FAD) mutation L435F or C410Y recapitulate the phenotypes of Psen1(-/-) mice. Production and steady-state levels of Aβ40 and Aβ42 are undetectable in KI/KI brains and reduced in KI/+ brains, though the Aβ42/Aβ40 ratio is slightly increased in KI/+ brains. Moreover, the FAD mutation impairs synaptic function, learning and memory, and age-dependent neuronal survival in the adult brain. Here we extend our analysis of the effects of the L435F and C410Y mutations to the generation of Aβ43. Similar to Aβ40 and Aβ42, production of Aβ43 is undetectable in KI/KI brains and reduced in KI/+ brains. These results support our previous conclusions that the L435F and C410Y mutations cause loss of Presenilin function and γ-secretase activity, including impaired Aβ production in the brain. This Matters Arising Response paper addresses the Veugelen et al. (2016) Matters Arising paper, published concurrently in Neuron.
منابع مشابه
Generation and deposition of Aβ43 by the virtually inactive presenilin‐1 L435F mutant contradicts the presenilin loss‐of‐function hypothesis of Alzheimer's disease
As stated by the prevailing amyloid cascade hypothesis, Alzheimer's disease (AD) is caused by the aggregation and cerebral deposition of long amyloid-β peptide (Aβ) species, which are released from a C-terminal amyloid precursor protein fragment by γ-secretase. Mutations in its catalytic subunit presenilin-1 (PS1) increase the Aβ42 to Aβ40 ratio and are the major cause of familial AD (FAD). An ...
متن کاملPresenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer’s Disease
Presenilins play essential roles in memory formation, synaptic function, and neuronal survival. Mutations in the Presenilin-1 (PSEN1) gene are the major cause of familial Alzheimer's disease (FAD). How PSEN1 mutations cause FAD is unclear, and pathogenic mechanisms based on gain or loss of function have been proposed. Here, we generated Psen1 knockin (KI) mice carrying the FAD mutation L435F or...
متن کاملPresenilin-1 mutations and Alzheimer's disease.
Mutations in the PSEN1 gene, encoding presenilin-1 (PS1), are themost common cause of familial Alzheimer’s disease (FAD). PS1 functions as the catalytic subunit of γ-secretase, an intramembranous protease that cleaves a variety of type 1 transmembrane proteins, notably including the amyloid precursor protein (APP) and Notch. Following prior cleavage by β-secretase, processing of APP by γ-secret...
متن کاملCapacitative Calcium Entry Deficits and Elevated Luminal Calcium Content in Mutant Presenilin-1 Knockin Mice
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To eluc...
متن کاملAlzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified γ-Secretase Complexes
BACKGROUND Mutations linked to early onset, familial forms of Alzheimer's disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 90 شماره
صفحات -
تاریخ انتشار 2016